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Abstract:  A clinical trial was carried out including 36 

volunteer patients which underwent unilateral THA sur-

gery (50% cemented, 50% uncemented). Changes in bone 

mineral density after the operation are monitored to as-

sess the outcome of the procedure.  

We found age and gender only to be a modest predictor of 

bone quality for our THA patients and since poor bone 

quality is known to be associated with a risk of revision 

surgery it needs to receive a higher weight in our pre-

clinical assessment when choosing between cemented and 

uncemented THA.   
 

Keywords: Total hip arthroplasty—Computed tomography 3D 

models—Bone mineral density—Cemented and uncemented 

implants. 

 

Introduction 

Total hip arthroplasty (THA) is performed with or with-

out the use of bone cement. The benefit of the cemented 

procedure is a faster achievement of implant stability 

compared to an uncemented procedure where the primary 

implant stability is secured by geometrical interlocking, 

press fit forces and friction between bone and implant, 

whilst the secondary stability is additionally secured by 

bone ingrowths into the surface texture of the femoral 

component. In the first years post-operatively, 

uncemented stems are more frequently revised than ce-

mented stems due to periprosthetic fracture. Managing 

these fractures may create a real challenge for the sur-

geons because of the poor quality of the surrounding bone 

[1]. On the other hand the revision surgery for 

uncemented implants has a higher success rate and gener-

ally results in fewer complications than revision surgeries 

for cemented implants [2]. Presently clinicians are faced 

with the lack of reliable guidelines when choosing be-

tween cemented or uncemented procedures.   

At our clinical center orthopedic surgeons chose between 

the cemented and uncemented THA based on age, sex and 

general health conditions, however, quantitative preopera-

tive measurements of bone quality have not yet been 

included in current clinical guidelines. This means that in 

general patients over 65 years receive cemented implants 

while the younger and healthy receive uncemented pros-

thesis. With the aim of improving our healthcare, reduc-

ing future costs and developing more thorough clinical 

guidelines to aid decision making, we have launched a 

clinical trial at our center where patients undergoing THA 

are systematically monitored for this purpose [3]. In the 

present paper we report preliminary results from this 

project. The specific aims of this part of the study are: 

 To quantify pre operative femoral bone quality. 

 To compare bone mineral density at two differ-

ent time points for patients already enrolled in 

the trial.   

 

Methods 

Data were obtained from 36 voluntary patients (20 fe-

males and 16 males) undergoing THA surgery for the first 

time, 18 patients received a cemented - and 18 received a 

cementless implant. The average age at the moment of 

surgery is 56 for the males and 62 for the females. The 

patients are scanned with a 64-slices spiral CT Philips 

Brilliance three times in one year: before, immediately 

after surgery and finally at 52 weeks post-surgery. The 

CT scanning region starts from the iliac crest and ends at 

the middle of the femur; slices thickness is 1mm, slice 

increment is 0.5mm and tube voltage was set to 120KVp. 

This CT dataset allows a precise 3D reconstruction of the 

regions of interest.  

Commercial software (MIMICS www.materialise.com) 

was used to segment each femur from CT data. The seg-

mentation was performed on the pre-surgery and post-op 

CT datasets and was mainly based on opportune thresh-

olds of the CT-HU (Hounsfield Unit). Based on our pre-

vious work [4], HU interval for cortical bone was set to 

601-1988 HU while the trabecular bone set to 250-600 

HU. The CT scan device was pre-calibrated with QUA-

SAR phantom before the pre-operative scans and 1 year 

later, before the post-op scans using the same CT protocol 

adopted for all patients A HU to BMD relationship was 

based on a quadratic function, BMD [mg/cm³] = a × HU
2
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+ b × HU + c, where a, b, c are calibration coefficients, 

which were computed from the phantom CT data. The 

correlation coefficient for this calibration was R
2
 ≈ 0.99 

(Fig.1).  

 
 

Figure 1: Interpolation of the linear regression curves which is 

used to convert HU values to BMD. 

 

To estimate the pre-op bone quality, BMD was calculated 

from the proximal femur volume in the region between 

femur head and lesser trochanter, along the intertrochan-

teric line (Fig 2-A).  The comparison between pre-op and 

1 year post-op BMD cannot be done using the same vol-

ume of interest as shown in figure 2-A due to metal arti-

facts.  Thus 2 bone subvolumes were select from the cor-

tical within middle and proximal femur which HU values 

are minimally influenced by the metal implant artifacts 

(Fig 2-B).  

 

 
Figure 2: A) The region of interest where the pre-op BMD is 

computed. B) Regions of interest where BMD pre-op vs. 1 year 

post-op are compared.  

 

The BMD was measured on the operated femur and on 

contralateral side (healthy) on the cortical bone from 2 

regions in the lesser trochanter area (ROI) minimally 

influenced by metal artefacts: 2 (indicated with a and b in 

Fig. 2-B). BMD on these areas is calculated 24 hours and 

1 year post surgery. 

Results  

As expected BMD was generally found to decrease with 

age but only with a modest negative correlation but this 

trend was more prominent in men than women (figure 3).  

The preliminary results from the bone density assessment 

1 year post-op are presented in table 1. The BMD varia-

tion is positive if the density increases otherwise negative. 

The decrease in BMD on the treated side was found to 

range of 1-6% measured at the lesser trochanter. On the 

contralateral side the BMD remained basically unchanged 

except in one patient.  

 
Figure 3: Pre-op bone mineral density (mg/cm

3
) vs. age in the 

region of interest displayed in figure 2A: Comparison of female 

and male patients. 

Discussion  

Our preliminary results indicate the BMD in THA patient 

in the study is only modestly correlated with age and 

gender i.e. there is a significant overlap in bone density 

between age groups and between male and female. We 

conclude that bone quality assessment will have to be 

given higher weight in our future treatment protocol for 

THA patients.  
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Table 1:  BMD at different  time point and relative variation  
Patient 

(Age/gender/implant) 

OPERATED SIDE 

24h 

Post-Op 

A 

24h 

Post-Op 

B 

1y 

Post-Op 

A 

1y 

Post-Op 

B 

1y/24h 

 

A 

1y/24h 

 

B 
21/M/Uncem 

52/M/Uncem 

56/F/Uncem 

56/F/Uncem 

58/M/Cem 

63/F/Uncem 

63/M/Uncem 

67/F/Cem 

68/F/Uncem 

77/F/Cem 

1.19 

1.30 

1.24 

1.23 

1.24 

1.16 

1.26 

1.24 

1.24 

1.19 

 

1.34 

1.38 

1.41 

1.40 

1.39 

1.32 

1.38 

1.41 

1.32 

1.34 

 

1.18 

1.22 

1.24 

1.21 

1.16 

1.16 

1.27 

1.27 

1.21 

1.20 

 

1.30 

1.35 

1.35 

1.32 

1.32 

1.31 

1.33 

1.34 

1.26 

1.32 

 

-1% 

-5% 

0% 

-1% 

-6% 

0% 

1% 

3% 

-2% 

1% 

 

-3% 

-2% 

-4% 

-6% 

-5% 

-1% 

-4% 

-5% 

-5% 

-1% 

HEALTHY SIDE       
21/M/Uncem 

52/M/Uncem 

56/F/Uncem 

56/F/Uncem 

58/M/Cem 

63/F/Uncem 

63/M/Uncem 

67/F/Cem 

68/F/Uncem 

77/F/Cem 

1.22 

1.26 

1.22 

1.23 

1.22 

1.12 

1.21 

1.16 

1.15 

1.12 

 

1.36 

1.39 

1.39 

1.36 

1.34 

1.39 

1.35 

1.36 

1.27 

1.28 

 

1.22 

1.26 

1.23 

1.24 

1.24 

1.12 

1.23 

1.18 

1.15 

1.12 

 

1.38 

1.39 

1.38 

1.34 

1.36 

1.31 

1.35 

1.36 

1.28 

1.28 

 

0% 

0% 

1% 

1% 

2% 

-1% 

1% 

2% 

0% 

0% 

 

2% 

0% 

-1% 

-2% 

1% 

-5% 

0% 

0% 

1% 

0% 
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Abstract:  Open flow microperfusion can be used to assess 

the amount of a topically applied drug directly in the skin. 

Large intra- and interindividual differences in skin proper-

ties can lead to biased results. In this study we propose a 

method based on skin impedance measurements to assess the 

properties of the skin barrier and thus compensate for vary-

ing permeability characteristics.      

 

Keywords: impedance, open flow microperfusion, skin 

penetration, topical drugs  

 
 

Introduction 

Open flow microperfusion (OFM) is a method for contin-

uous sampling of interstitial fluid (ISF) from various 

tissues of animals and humans. Subsequent analysis of the 

OFM samples delivers time resolved profiles of many 

analytes covering a wide range of molecule sizes and 

chemical properties (e.g. hydrophilicity, lipophilicity).  

OFM is based on minimally invasive probes with an ex-

change area featuring macroscopic openings. During the 

sampling process the probes are perfused with a carrier 

fluid which mixes with the interstitial fluid of the target 

tissue. The exchange of carrier fluid and tissue fluid takes 

place at a certain equilibrium level that allows to measure 

specific substances present in the tissue by downstream 

analysis in the bioanalytical lab. OFM is used to investi-

gate drug penetration and drug efficacy in skin in vivo:   a 

probe is placed in the skin, and the cream containing the 

active ingredient is applied to the skin site directly above 

the probe. However, there are large individual differences 

in skin conditions depending on the location of the test 

site (e.g. forearm, abdomen thigh) and is also dependant 

on the subject itself (e.g. skin type, environmental condi-

tions). To correct for these differences that will affect the 

variability of OFM derived drug profiles a large number 

of skin donors is necessary to reliably test topical drug 

penetration. In this study we aimed to investigate whether 

skin impedance measurements can be used to predict at 

least some of the skin’s permeability characteristics. 

 

Methods 

Our study is based on the hypothesis that variations in 

penetrating drug amounts during dermal OFM sampling 

can be correlated with variations of the passive electrical 

parameters of the skin. Fresh human skin from plastic 

surgery was mounted on an ex-vivo test unit (EVA-

CELL, Joanneum Research, Graz) to maintain skin vitali-

ty and temperature. Skin impedance of each donor skin 

flap was assessed by using paediatric ECG electrodes in a 

3-electrode setting. The electrodes were attached in an 

equilateral triangle with a side length of 5 cm. The dis-

tance between the electrodes was chosen to be 2.5 cm 

with an electrode diameter of also 2.5 cm. This symmet-

rical setup allowed moving the three electrodes types 

(reference, counter and working electrode) simply by 

varying reconnection of the electrodes to the potentiostat. 

Impedance spectroscopy and single frequency measure-

ments were used to assess stratum corneum impedance. 

Clobetasol-17-proprionate (CP17) was applied topically 

on the skin flaps characterized with the impedance meas-

urements and the penetration of the drug into the dermis 

was continuously profiled for 24 h by using dermal OFM 

sampling.  

 

Fig.1: Intradermal concentrations of CP17 in 5 donor skin 

flaps assessed by continuous sampling using dOFM 

probes.  
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Results 

To study at what frequencies the skin layers responsible 

for the barrier function for skin penetration are assessed 

impedance spectra were recorded from 1000 to 1 Hz with 

5 data points per frequency decade. We found that low 

frequencies below 100 Hz showed a significant correla-

tion to skin penetration properties. The sensitivity of the 

measurement increases with decreasing frequency which 

is in good agreement with data from the literature [1]. At 

higher frequencies also deeper parts of the skin and the 

subcutaneous tissue contribute to the impedance meas-

ured, therefore lower frequencies, which assess only the 

top layers of the skin, or the stratum corneum only in an 

optimal case, are more sensitive to penetration properties 

of the skin. 

 

 

Fig. 2: at low frequencies a significant higher sensitivity 

to skin penetration properties is observed. 

 

 

To investigate the relationship between skin impedance and 

penetrated quantities of CP17, the impedance was plotted 

against the area under the curve (AUC) of the CP17 concen-

tration over 24 h, a standard measure used in pharmacokinet-

ics. Regression analysis revealed a clear relationship between 

impedance and the penetrated CP17 amount. 

 

 
Fig. 3: The electrical reactance shows good correlation 

with the measured AUC values of CP17 profiles (n=5). 

 

 

 

The correlation of skin impedance and drug penetration 

properties of the skin can be used to normalize dermal 

OFM AUC values thus eliminating or minimizing the 

influence of intra- and interindividual differences in skin 

properties.  

 

Fig. 3: skin properties variations leading to impedance 

measurements  (n=5). 

 

Discussion 

Our results support the hypothesis that the stratum 

corneum is the main source of variability when testing 

topical drug penetration into human skin ex-vivo. We 

conclude that skin impedance measurements can be help-

ful to characterize skin barrier properties and thus support 

future ex-vivo and in-vivo skin penetration studies using 

dOFM sampling. Skin impedance measurements can be 

used to screen skin properties before OFM studies were 

performed. Restricting the accepted penetration proper-

ties of study subjects to the range representing the 

population average could significantly reduce the num-

ber of subjects needed and thus reduce study costs. 
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Abstract:  Atrial flutter and atrial fibrillation can be caused 

by heterogeneities in membrane function as well as in mac-

ro- and microstructure. Rapid pacing techniques combined 

with potential recording techniques can help to localize 

critical arrhythmogenic substrates within the atrium. This 

work describes the heterogeneity of local conduction in the 

cavotricuspid isthmus (CTI) during electrophysiological 

experiments with Rabbit hearts. By means of rapid pacing 

techniques it can be shown, that local blockade of excitation 

spread can be predicted using appropriate pacing protocols. 

The pre-block behaviour is characterized by a substantial 

increase in the degree of fractionation and in a decrease of 

amplitude in extracellular potentials. 

 

Keywords: atrial flutter, rapid pacing, complex fraction-

ated atrial electrogram, electrophysiological experiment  

 

Introduction 

Atrial fibrillation and atrial flutter is often preceded by 

tachycardia. Hence rapid pacing can be used to study the 

behaviour of cardiac activation before local or global 

block of excitation spread arises. Increased pacing rate 

leads to changes in action potential duration and alters the 

excitation spread. The smooth wave front of depolariza-

tion then may break into multiple wavelets with small 

delays to each other and following complex pathways. 

These effects are caused by discontinuities in the macro- 

and microstructure of cardiac tissue. We postulate that 

during rapid pacing, these effects would lead to increased 

signal fractionation and spatial heterogeneity, specifically 

when pacing intervals come close to the absolute refracto-

ry period. In electrophysiological experiments with right 

atria from Rabbits we studied the region of the cavo-

tricuspid isthmus (CTI). Clinical electrophysiologists see 

this region as one of the targets for catheter ablation to 

cure atrial arrhythmias [1]. Specific pacing protocols were 

applied to induce arrhythmogenic conditions. Spatial 

heterogeneity and beat-to-beat changes of local conduc-

tion were analyzed by means of multisite recording tech-

niques of extracellular potentials with ultra-high spatial 

and temporal resolution [2].  

 

Methods 

Electrophysiological experiments were carried out in 

accordance to the national ethic guidelines. Right atrial 

specimen were dissected from isolated Rabbit hearts and 

placed in a tissue bath with oxygenated Tyrode’s solution 

at 36°C. Current pulses of 1 ms duration and twice the 

threshold level were applied by means of a 50 µm thick 

tungsten wire at given sites of the tissue. A ramp-like 

pacing protocol was executed i.e. subsequent stimuli were 

applied with decreased pacing cycle length (PCL) com-

pared to the previous one until conduction block occurred. 

Multisite recordings of extracellular signals e(t) of the 

last 6 beats before block were used to analyze the quality 

of local conduction of the depolarization wave. Ampli-

tude of the signals as well as the fractionation index (FI), 

i.e. the number of negative deflections of de(t)/dt [3] 

were used to describe the increasingly hampered excita-

tion process. At least one of the four-electrode-sensors 

was placed at sites were muscle bundles merge or branch, 

i.e. at sites of structural discontinuities.  

 

Results 

 

 

Figure 1: Spatial heterogeneity of depolarization signals 

within one PectM. Recordings on the right in line 2 and 3 

indicate incoming wavelet from the top right branch. 

 

Along the excitation pathway in the CTI, groups of pecti-

nate muscles (PectM) connect the Crista Terminalis (CT) 

with the vestibule (VB). PectMs branch into two or three 

fibres and merge again before reaching the VB. At these 

sites complex signal waveforms with multiple deflections 

in de(t)/dt can be expected frequently, specifically dur-

ing rapid pacing close to the block interval. An example 

of spatial heterogeneity of local signals is depicted in 

Fig. 1. A map of signals in the lower part of a PectM is 

shown. Note the small amplitudes and the high degree of 

fractionation of the signals taken at the right edge of the 

mapping area. This indicates an electrically uncoupled 

wavelet entering from the small merging fibre from top 

right. 
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Diversity of depolarization signals is not only present in 

terms of spatial heterogeneity but also at one given recording 

site in response to subsequent pacing stimuli when PCL 

decreases. During control values of PCL e(t) and de(t)/dt 

are quite uniform showing a large amplitude and just minor 

distortion visible as a small secondary deflection in 

de(t)/dt  (see Fig. 2). During the last 6 stimuli before block 

arises amplitude diminishes and the fractionation index FI 

increases progressively.  

 

 
Figure 2: Progressive change of e(t) and de(t)/dt with 

PCL approaching absolute refractory period. Ramp like 

pacing protocol was used. 

 

We analysed a large number of recordings taken in CT 

(239), PectM (1037) and VB (264) from 15 hearts. The 

distribution of FI within each class of tissue differs mark-

edly (see Tab. 1) due to different histological structure. 

CT represents the most complex microstructure and 

pathways for the cardiac impulse entering from the sinus 

node area into the CT resulting in the lowest portion of 

uniform signals with FI=1. In the class of PectM signals 

the dominant portion of recordings is uniform. In the VB 

we found a higher number of uniform signals compared to 

CT but also a much larger portion of large FI signals 

(FI=8-10). This might be linked to the fact, that on one 

hand very compact strands of PectM fibres incorporate 

smoothly in the VB and on the other hand signals are 

colliding there with crossing fibres. 

Table 1: Fractionation Index distribution obtained in CT, 

PectM and VB (given in %). 

FI CT PectM VB 

1 20,51 49,03 46,89 

2 26,50 26,56 17,84 

3 17,95 11,19 14,11 

4 15,81 5,45 5,39 

5 8,12 3,60 5,81 

6-10 11,11 4,18 9,96 

 

Discussion 

Uniform conduction with biphasic extracellular signals 

along cable like strands of cardiac fibres can be predicted 

by computer simulation. Within a network of such strands 

at least piecewise continuous conduction can be expected 

interrupted just at branching and merging sites represent-

ing macroscopic discontinuities. At microscopic scale 

layers of connective tissue are oriented parallel to the 

muscle fibres and form obstacles changing the signal 

waveform with directional effects [4]. By such micro-

structures the depolarization wave front breaks up into 

wavelets with delays in the range from 0.5 to 10 ms. It 

should be emphasized that this type of fractionation is 

different to those seen in clinical human atrial electro-

grams with multiple deflections in the range of 50-

100 ms. Fractionations like demonstrated here with ultra-

high resolution systems (50 µm inter-electrode distances) 

would not be detectable with relatively coarse recording 

systems (mm range) like used in clinical electrophysiolo-

gy.  

At a microscopic size scale the CTI can be seen as a net-

work of piecewise cable-like muscle structures producing 

spatial heterogeneous signals waveforms. In addition to 

this macro- and microstructure related heterogeneity, 

temporal parameters like rapid pacing can change the 

character of local conduction from uniform towards com-

plex and lead to local block and atrial arrhythmia [5]. 

High resolution recording systems could help to elucidate 

the mechanisms of complex conduction and improve 

analyzing techniques to identify zones for ablation.  
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VARIATIONS IN PACING DYNAMICS RESULT IN DIFFERENT
HETEROGENEITY AND DEVELOPMENT OF CONDUCTION BLOCK
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Abstract: The complex network of muscle fibers in the right
atrium is characterized by structural and functional het-
erogeneities. The influence of these heterogeneities on im-
pulse conduction determines the activation sequence and
increases with increasing heart rates. In this work we show
that application of dynamic pacing protocols provokes func-
tional heterogeneities and results in ambiguous excitation
patterns due to pacing history and structure.

Keywords: right atrium, pacing, heterogeneity, cardiac
memory

Introduction
The structural complex muscle network of the cavotricus-
pid isthmus (CTI) in the right atrium is seen as potential
arrhythmogenic substrate [1]. Structural and functional het-
erogeneities influence excitation spread across the CTI es-
pecially at elevated heart rates.
Functional heterogeneities, e.g. restitution of action poten-
tial duration (APD) and effective refractory period (ERP),
are believed to play an important role in genesis of arrhyth-
mias [2]. Hence, restitution depends on pacing history and
pacing dynamics and results in heterogeneous development
of local and global conduction block.
Especially in areas where single muscle fibers branch into
multiple fibers the electrical source-sink balance is dis-
turbed and the question arises if at elevated heart rates con-
duction fails earlier in one branch than in the other one.
This could create preferred paths for excitation spread with
macroscopic re-entry pathways representing substrates for
self-sustaining tachyarrhythmias.
In this work we present a methodical approach to provoke
and measure regional heterogeneities of conduction block
behavior by means of appropriate pacing protocols.

Methods
Tissue Preparation: A guinea pig (weight ≈ 500 g) was
anesthetized with 0.4 ml kg−1 Ketamin and 0.4 ml kg−1

Domidor and sacrificed according to National Ethic Guide-
lines. The heart was quickly excised and immersed in cold
Tyrode solution (4–8 ◦C). The right atrium with intact sinus
node was dissected, pinned down on a transparent silicone
carrier, and placed in a tissue bath with warmed (36.4 ◦C)
and oxygenated (95 % O2, 5 % CO2) Tyrode solution where
it immediately developed autorhythmicity.
Signal recording: Miniaturized flexible sensor arrays com-
prising 4 Ag/AgCl electrodes in quadratically arrangement

with 50 µm edge length [3] were used to estimate the car-
diac near field (CNF). The measurement setup and signal
recording technique was described in an earlier work [4].
Pacing: Stimulus pulse trains were generated using a
custom-written software application (LabVIEW, National
Instruments, Austin, Texas) and a FPGA-board (NI PXI-
7813R, National Instruments, Austin, Texas). Timing was
specified in terms of pacing cycle length (PCL), i.e. the in-
terval in ms between 2 consecutive stimuli [5]. 2 timing
characteristics for pacing were used: (i) ramp-like and (ii)
stair-like. In ramp-like pacing protocols PCL was reduced
after each stimulus, whereas in stair-like pacing protocols
PCL was reduced after 15 stimuli at the same PCL. Timing
is listed in Tab. 1.

Table 1: Timing of pacing protocols.
Parameter Ramp Stair

PCLstart 250 250
∆PCL 5 5
Stimuli at PCL 1 15
PCLend 20 20

Results
Fig. 1 shows the tissue preparation and the location of stim-
ulus and recording sites. Recording site P1 was close to
the stimulus site S. Recording sites P2 and P3 were below
a branching area on 2 distinct emerging muscle fibers. Dur-
ing stair-like pacing protocol P1, P2, and P3 showed differ-
ent development of conduction block. In P3 (right muscle
branch) conduction failed earliest at a PCL of 70 ms. In P2
(left branch) conduction was sustained until a PCL of 40 ms
and in P1 conduction was successful until a PCL of 20 ms
(Fig. 2).
In contrast when a ramp-like pacing protocol was applied
conduction block occurred at the same PCL (50 ms) at all
recording sites (Fig. 3).

Discussion
The preference of specific muscle fibers for excitation
spread during high pacing rates favors re-entrant excitation
and therefore tachyarrhyhmias. It is known that longitudi-
nal and transversal excitation spread exhibit different block
behavior [6]. The complex macro- and microstructure of the
CTI dictates the direction of excitation spread and therefore
it is likely that individual excitation pathways are preferred.

Biomed Tech 2013; 58 (Suppl. 1) © 2013 by Walter de Gruyter · Berlin · Boston. DOI 10.1515/bmt-2013-4422

Brought to you by | Landspitali University Hospital
Authenticated | 130.208.204.5

Download Date | 12/2/13 10:32 AM



SP1

P2 P3

Figure 1: Tissue Preparation. S is the stimulus site, P1..3

are the recording sites. P2 and P3 are positioned below a
branching area.
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Figure 2: Occurrence and behavior of conduction block
for stair-like pacing protocol. Bottom trace (S) is the ap-
plied stimulus train, top traces are the evaluated stimulus
responses. First conduction block Sb occurs at different
pacing intervals in all 3 recording sites.
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Figure 3: Occurrence and behavior of conduction block
for ramp-like pacing protocol. Bottom trace (S) is the ap-
plied stimulus train, top traces are the evaluated stimulus
responses. First conduction block Sb occurs simultaneously
at all recording sites.

Differences in block behavior between the two types of pac-
ing protocols suggest that pacing history and cardiac mem-
ory [7] plays a vital role in impulse propagation. A rapid
increase in PCL during a ramp-like pacing protocol appar-
ently results in more uniform distributed adaptation dynam-
ics.
It has to be noted that the conduction time between stimulus
site and recording sites P2 and P3 is quite large (≈ 35 ms).
If PCL is in the same range or below this conduction time
correlation between stimulus and activation response is dif-
ficult. Nevertheless Fig. 2 and Fig. 3 are valid until first
occurrence of conduction block.
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CONTROL OF A MOBILE REHABILITATION ROBOT USING EXACT
FEEDBACK LINEARISATION
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Abstract: This contribution is concerned with the feedback
control of a table-placed mobile rehabilitation robot us-
ing exact feedback linearisation to precisely track arbitrary
position and orientation profiles. An outer control loop
exactly linearises and decouples the nonlinear kinematic
robot model. This loop also generates reference velocities
for the three omnidirectional wheels of the robot that are
feedback controlled by individual digital controllers on a
inner loop level. The concept was validated in simulations.

Keywords: Nonlinear Control, Robotics, Rehabilitation

Introduction
Robot-aided neuro-rehabilitation has been widely studied in
recent years. A variety of upper limb rehabilitation robots
has been developed to assist, enhance, evaluate, and docu-
ment neurological and orthopaedic rehabilitation of move-
ment. However, these devices exclusively focused on the
clinical setting which entails a lack of mobility, high acqui-
sition costs and limited patient training times.
The Reha-Maus, which is a novel upper limb rehabilitation
system developed by the Control Systems Group at TU-
Berlin, represents one of the first concepts of a portable
rehabilitation robot that actively provides different levels
of patient assistance [1]. The design of the Reha-Maus is
based on a mobile robot driven by omni-directional wheels.
This enables rotational and translation motion in a plane for
guiding the hand/lower arm.
However, the previously realised control scheme only al-
lowed the arbitrary tracking of reference positions while the
orientation had to be kept nearly constant [1]. Unwanted
changes in the orientation, e.g. by external disturbances,
could even render the position control loop unstable.
This contribution describes a novel motion control system
for the Reha-Maus that involves nonlinear control theory
in order to enable the generation of arbitrary position and
orientation profiles.

Methods
Omni-directional robot and kinematic model

The Reha-Maus is designed to allow patients to train their
hemiparetic arm. Figure 1 shows a prospective application
scenario of the Reha-Maus. The lower right arm of a patient
is pivoted on the robotic platform. The system is used to as-
sist or resist the patient’s arm and shoulder movements dur-
ing the training. Human-device interaction forces/moments

3 DC motors with
incremental encoders

3 omni-wheels

Arm fixture - free to
rotate on the robot

Load cell

Bottom view
y

x

Figure 1: An application scenario of the Reha-Maus.
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Figure 2: Reha-Maus: Geometry and coordinate systems.

can be measured by a 6D force/torque sensor underneath
the arm support, and the movement is monitored by an in-
frared camera above the table and incremental encoders at
the motors. Arbitrary translational and rotational motion
on the table surface is facilitated by three DC-motor-driven
omni-wheels. More technical details are given in [1].

The Reha-Maus possesses three DoFs and has a fixed body
frame [xR, yR], aligned to the centre of mass (cf. Figure 2).
The description of the kinematics and dynamics takes place
in generalised coordinates q = [x, y, θ]T , where x and y
represent the position of the robot on the planar workspace
and θ is the robot orientation. A kinematic model was de-
rived in [1] based on the assumption that the wheels have
no slippage in the direction of traction force. The angular
velocities of the three omni-wheels are forming the vector
ω(t) = [ω1(t), ω2(t), ω3(t)]

T . The kinematic relation be-
tween the wheels’ angular velocity vector ω(t) and the gen-
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Figure 3: Results for tracking a circular trajectory with si-
multaneous robot rotation.

eralised velocity vector q̇(t) is defined as

q̇(t) = Γ(θ(t))ω(t) (1)

Γ(θ(t)) = rω

cos(θ) cos(θ + 2π
3 ) cos(θ + 4π

3 )
sin(θ) sin(θ + 2π

3 ) sin(θ + 4π
3 )

sin(ϕ)
rr

sin(ϕ)
rr

sin(ϕ)
rr

 ,

where rr = 10.5 cm is the robot rotation radius, and
ϕ = 39◦ is a construction specific angle. The scalar rω
is the radius of one omni-wheel. A discrete-time kinematic
model can be obtained by the Euler method with the sam-
pling period ts = 50ms:

q(k + 1) = q(k) + Γ(θ(k))ω(k). (2)

Here, k is the sample index and Γ(θ(k)) = tsΓ(θ(k)).

Control system

To perform arbitrary robot movements, a cascaded discrete-
time control structure is applied.
An inner loop consists of three independent motor speed
controllers that operate the system at maximum actuator
capacity in order to facilitate the simplified state-space de-
scription of the robot given below. The sample rate of the
inner loop is 1 kHz and a bandwidth of approximately 45 Hz
is achieved. The design of each motor speed controller
is based on an experimentally identified transfer-function
model and is described in [1].
An outer loop regulates the generalised robot coordinates
and generates as control signals the reference wheel veloci-
ties for the inner loop. The sampling time of the outer loop
is set to 50 ms. The relationship between the wheel velocity
reference vector ωr and controlled wheel velocity vector ω
can be expressed as a simple time delay of one sampling
step:

ω(k + 1) = ωr(k). (3)

Combining the kinematic model (2) with the controlled
wheel speed dynamics (3) yields a non-linear model with
the state x(k) = [q(k)T ,ω(k)T ]T , the output y(k) = q(k)

and the input signal ωr(k). This model is employed for
designing the outer loop controller. The entire state x(k)
is accessible by measurement or estimation [1]. In order
to exactly linearise and to decouple the discrete-time multi-
variable non-linear model, the following relation between
the output y and the input ωr is derived from the state-space
model (Eqs. (2) and (3)):

q(k) = q(k − 1) + Γ(k − 1)ωr(k − 2). (4)

The control law

ωr(k) = Γ
−1

(k + 1)(v(k)− q(k + 1))

leads to q(k) = v(k − 2) with the new input signal v. The
now linearised and decoupled plant model represents a sim-
ple time delay of two sampling steps with respect to signal
v. The term q(k+1) can be calculated from q(k) and ω(k)
using the state propagation described in Eq. (2). For each
generalised coordinate, the exactly linearised plant will be
separately feedback controlled by a second order standard
linear digital controller with integral action [2] to allow the
tracking of a given reference (xr, yr, θr). The poles of the
outer closed-loop dynamics have been chosen to obtain a
bandwidth of approximately 2 Hz.

Results
The cascaded control scheme with the nonlinear controller
at the outer loop was evaluated in simulations first. Figure 3
shows the results of a tracking test. The robot had to follow
a circular path within 4 s while rotating at the same time
around its axis. Noise, typically observed at the real system,
was added to the states during simulation. The robot was
initially in the centre of the circle with an orientation error
of 180◦.

Discussion
The proposed nonlinear control scheme successfully lin-
earises and decouples the nonlinear discrete-time model and
therefore allows the tracking of arbitrary position and orien-
tation profiles. After the compensation of initial errors, the
system output follows the references as specified. The ob-
served wheel velocities are feasible in practice. The devel-
oped controller forms the basis for the realisation of many
therapeutic exercises that will be realised by the robot. The
experimental validation of the control concept is ongoing.
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Abstract: Acute increase of intracranial pressure (ICP)
usually has to be treated with an external ventricular
drainage (EVD). Current standard mechanical EVD carry
a lot of disadvantages, which hypothetically could be bet-
ter managed by a newly developed electromechanical EVD.
In this report our first preliminary results of such an elec-
tromechanical EVD applied in a porcine animal model are
presented. The drainage was demonstrated to be both suc-
cessful in monitoring and controlling elevated ICP, and able
to detect slit ventricles due to overdrainage, if the indented
target ICP was set too low.

Keywords: External Ventricular Drainage, Intracranial
Pressure, Control, Animal Model

Introduction

An increase in intracranial volume causes raise of intracra-
nial pressure (ICP). Such an increase can occur for example
because of an imbalance of the continuous process of pro-
duction and resorption of cerebrospinal fluid (CSF). Acute
high ICP can be life threatening and has to be treated im-
mediately. The standard procedure consists of insertion of
a pressure sensor for ICP monitoring as well as a catheter
into the ventricles for external drainage of CSF. Usually, the
height of the CSF drainage reservoir determines the result-
ing ICP due to its hydrostatic pressure. This conventional
mechanical external ventricular drainage (EVD) has poten-
tial disadvantages and possiblities of complications. If the
position of the reservoir is chosen too low or the patient
changes to an upright position, undesirable overdrainage
may occur. The ventricles can collapse to slit ventricles and
occlude the catheter perforation. Currently, there is exclu-
sively one commercially available electromechanical EVD
consisting of an ICP sensor integrated in the drainage tube
followed by a peristaltic pump called Liquoguard® (Moeller
Medical GmbH), which is conceived of potentially mini-
mize these problems. However, it is advisable to use this
system with an additional independent ICP sensor to be
able to detect slit ventricles. If slit ventricles occur, the
integrated pressure sensor measures incorrect ICP values
[1]. Therefore, the authors developed an innovative elec-
tromechanical "intelligent" EVD (iEVD) [2], which mea-
sures simultaneously ICP, pressure and flow in the tube and

h

Control box

α
Phyd

PICP

Q

Valves
Drainage
reservoir

Figure 1: Experimental setup with the iEVD

patient position α (Figure 1). The iEVD functions by a
hydrostatic pressure difference between cranium and CSF
drainage reservoir and controls the ICP by positioning of a
tube squeezer valve and an additional switching valve. It
was already tested in an animal experiment, is able to re-
sponse to changes of the drainage reservoir position or tar-
get ICP value and can indirectly detect slit ventricles.

Methods
In the present animal experiment, inducing a kaolin solution
into the cisterna magna reduces the pigs’s CSF resorption
surface. The pig was kept under general anaesthesia. On
the third day, the iEVD was implanted and tested.
The control loop with the iEVD is shown in Figure 2. The
gradual tube squeezer valve sets an appropriate operating
point for the system by adjusting the drainage to the target
flow Qtarget and the switching valve was used in the outer
control loop to keep ICP at the intended level. In recent
studies, the position of the gradual tube squeezer valve was
the only control variable applied. However, due to an in-
tegrative error in the position sensor of the tube squeezer
valve, the nonlinear relationship of motor position to hy-
draulic resistance could not be compensated exactly after
some time [2] and hence the switching valve was added. A
filter uses a 5 s moving window over 100 Hz ICP measure-
ments, determines the maximum (systolic) and minimum
(diastolic) ICP value and calculates the average 1 Hz-ICP
value by the following equation:

ICP =
1

3
(ICPmax + 2 · ICPmin) (1)

The control algorithm works with a sample frequency of
1 Hz. At the beginning, the switching valve opens and the
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following tube squeezer valve gradually opens in minimal
step size of 2.5 µm until the iEVD drains a predetermined
target flow Qtarget. After this initialization the switching
valve is controlled with a hysteresis of 0.3 mmHg. While
the switching valve is open, a secondary controller increases
the stored value of Qtarget by 50 % if ICP is increasing
more than 0.3 mmHg within 1 s or ICP is not decreasing
after a certain threshold time.
Whenever QEVD < 1.25 ·Qtarget, the controller increases
stepwise the opening position of the tube squeezer valve
until Qtarget is reached.
Slit ventricles are diagnosed when pulsation of the brain is
not passed on to the water column and the difference of the
maximal and minimal value within a 5 s window of 100 Hz
data of the pressure sensor in the drainage tube is smaller or
equal to 1 mmHg.

Results
The target ICP had to be chosen higher than 8 mmHg other-
wise the pig suffered from slit ventricles (s. Figure 3). With
a target ICP of 8 mmHg, slit ventricles occured at approx-
imately t =50 s and at t =56 s the pulsation in the water
column Phyd got smaller than 1 mmHg and slit ventricles
were identified. The compliance of the tubing dampens the
amplitude of ICP by 25 %.
With a higher target ICP the drainage functioned well as
shown in Figure 4. At t =110 s the level of the drainage
reservoir was increased and the flow decreased. At t =300 s
the target ICP was decreased from 10.5 mmHg to 10 mmHg
and hence Qtarget was increased by the controller to drain
sufficently. The tube squeezer valve gradually opened the
tube until Qtarget was reached again. After ∆t ≈200 s the
target flow was constant and only the outer control loop was
active once again.

Discussion
First tests of the iEVD at a pig were successful. Potential fu-
ture improvements could be an automatic increase of target
pressure, if slit ventricles were detected. This preliminary
iEVD can serve as a platform for more advanced control
approaches: Foltz et al. [3] found out that the waveform
is more reliable than mean ICP for diagnosis in humans.
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Figure 2: ICP control loop
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Figure 4: Measured adaption of target flow to maintain the
changing target ICP at t =300 s

If pigs show similar single pulse waveform change follow-
ing increasing ICP, it would be possible to observe how the
iEVD performs in draining according to waveform.
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Abstract:  Mathematical models of respiratory mechanics 

can be used to optimize ventilatory settings. This paper 

presents an approach to calculate patient-specific ventila-

tor settings during pressure controlled ventilation. The 

proposed algorithm identifies the 1st Order Model of 

respiratory mechanics and calculates ventilator settings 

that provide a defined alveolar minute ventilation with 

minimal inspiration pressure and allow sufficient expira-

tion time to avoid the build-up of intrinisic PEEP. The 

results can also be used to visualize the nonlinear relation 

of ventilation parameters. Retrospective comparison of 

calculated ventilator settings in clinical data indicated 

high concordance to clinically optimized ventilator set-

tings. The proposed algorithm and visualization uncovers 

the nonlinear interaction of ventilation parameters and 

supports the determination of individualized ventilator 

settings. The algorithm minimzes inspiration pressure 

necessary to achieve a predefined minute ventilation, 

which may be a useful approach in optimizing lung-

protective ventilation. 

 

Keywords: Model-based Therapy, Optimized Ventilator 

Setting, Respiratory Mechanics 
 

Introduction 

Mechanical ventilation carries the risk of ventilator-

induced lung injury (VILI), caused by excessive stress 

and strain to the lung tissue [1]. To minimize the risk of 

VILI, ventilator settings should be adapted to the individ-

ual breathing mechanics of the patient. Currently there is 

no general consensus about the “ideal” ventilation strat-

egy for preventing VILI. However, there is evidence that 

considering individual lung properties might be beneficial 

[2]. Thus, mathematical models of respiratory mechanics 

can be used to quantify the characteristics of the respira-

tory system leading to personalized optimized ventilator 

settings [2]. This paper presents an approach to calculate 

and illustrate the influence of patient-specific ventilator 

settings during pressure controlled ventilation (PCV) to 

maintain a preset minute ventilation. Finally, ventilator 

settings with minimal inspiration pressure and sufficient 

inspiration and expiration time can be selected to mini-

mize alveolar stress and to avoid the build-up of intrinsic 

PEEP. 

 

Methods 

The alveolar ventilation is the effective part of the applied 

minute ventilation (MV) penetrating the regions of the 

lung where gas-exchange occurs. Alveolar ventilation 

depends on the dead-space volume VD, the tidal volume 

VT and the respiratory rate (RR): 

  RRVVV DTA      (1) 

VD can be approximated using the estimated patient’s 

ideal body weight (iBW). 

iBWkg

mL
VD 2      (2) 

To calculate the required tidal volume to maintain the de-

sired alveolar ventilation, Eq. 1 is rearranged using the inspi-

ration and expiration time (tI and tE) to represent RR: 

  DEIAD
A

T VttVV
RR

V
V  


   (3) 

The tidal volume in Eq. 1 can be simulated by using a 

patient-specific model of respiratory mechanics and the 

applied airway pressure as the defined input signal. 

Respiratory mechanics model: The 1st Order Model 

(FOM) of respiratory mechanics is a serial arrangement of 

a resistive element (R) and a compliant compartment (C). 

The FOM is given as a transfer function:  
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Model simulation: During PCV a pressure signal accord-

ing to Figure 1 is applied by the ventilator. The initial 

phase for t < tR and can be described as follows: 
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Figure 1: paw during inspiration phase in PCV 

 

The entire pressure signal during inspiration is con-

structed by using a step-function σ(t): 
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The resulting volume as output signal can be derived in 

Laplace-Domain by multiplying the transfer function and 

the Laplace-transferred input signal: 

  )()()( sHtpLsV aw      (6) 

By an inverse Laplace-Transformation the resulting tidal 

volume can be derived in the time-domain for t > tR.  
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Table 1: Patient characteristics with applied ventilator settings (tR = 0.2 s) together with identified model parameters and 

calculated ventilator settings (tR = 0.2 s). 

Pat. Height Diagnosis 
alv.Vent 

(L/min) 

pI,Set 

(cmH2O) 

PEEP 

(cmH2O) 

tI,Set 

(s) 

tE,Set 

(s) 

R 

(cmH2O·s/L) 

C 

(mL/cmH2O) 

τE 

(s) 

pI,Calc 

(cmH2O) 

tI,Calc 

(s) 

tE,Calc 

(s) 

1 170 
Trauma, mod. 

ARDS 
7.0 30.0 15.0 2.0 3.0 14.5 51.2 0.92 29.1 1.5 2.8 

2 163 
Gold IV 

Sepsis 
5.9 25.0 7.0 0.8 1.8 15.6 25.9 0.45 20.7 0.9 1.4 
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Calculating ventilator settings: To find the relation of 

inspiration pressure and inspiration time to meet the calcu-

lated tidal volume in Eq. 3, Eq. 7 is rearranged in terms of 

inspiration pressure.  
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Patient-specific ventilator settings with respect to sufficient 

expiration time require an expiration time being at least three 

times the time constant during expiration τE [3]. Thus, pI is 

calculated for for two different tE = 3·τE and tE = 4·τE and two 

different tR, being 0 and 0.2 s for various tI in the range of 0.1 

to 4 s. 

Model identification: The patient-specific parameters R and 

C were determined by fitting the FOM to inspiratory data of 

measured PCV-cycles using multiple linear regression 

method. τE is estimated by fitting an exponential function to 

the expiratory flow data. 

Analysis of clinical data: Data sets of two ventilated pa-

tients in PCV from a previous clinical trial were used for this 

analysis (Table 1). Written informed consent had been ob-

tained from the patients. The clinical ventilator settings had 

been optimized by experienced ICU-physicians to provide a 

clinically acceptable minute ventilation with minimal pI 

while avoiding the build-up of intrinsic PEEP. The recorded 

data were used to identify the model as described and the 

algorithm calculated ventilator settings that would yield the 

same alveolar minute ventilation.  

 

Results 

After estimating R, C and τE of the ventilated patients (Table 

1), the nonlinear relation between the ventilator settings of pI 

and tI for tE = 3·τE and 4·τE, and tR = 0.0 s and 0.4 s were 

obtained (Fig. 2). Obviously, these relations show a unique 

minimum for pI. Longer tE and longer tR lead to higher pI to 

maintain the same alveolar ventilation. Additionally, the 

effect of tR on pI is more dominant in regions of shorter tI and 

gets smaller with increasing tI. The clinical settings in Patient 

1 (Fig. 2, left) indicate, that the patient was ventilated with tE 

being in the region of 3·τE. To minimize pI, tI could be re-

duced from 2.3 to 1.8 s. Patient 2 (Fig. 2, right) was venti-

lated with tE ≈ 4·τE. The applied pI could be decreased from 

25 cmH2O to 21 cmH2O by shortening tE to 3·τE and tI from 

1.4 s to 0.9 s. 
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Figure 2: Patient-specific relation of ventilator settings. pI 

over tI to achieve a defined alveolar ventilation, for various tE 

and tR (left: Patient 1, right: Patient 2) 

 

Discussion 

The methodology proposed offers clinically acceptable pa-

tient-specific suggestions of ventilator settings that are di-

rectly applicable at the ventilator. The settings at minimal pI 

could be considered as lung-protective as mechanical stress 

may be minimized and additionally the risk of intrinsic-

PEEP build-up is reduced. The visualization of the nonlinear 

interaction of ventilator settings can be helpful for the clini-

cian to get an impression on the quality of ventilation and to 

find a direction for further optimization to following thera-

peutic goals. The nonlinear relation of ventilation parameters 

becomes transparent and may support the determination of 

optimized ventilator settings that consider the individual lung 

physiology. 
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Abstract:  The main objectives during general anaesthesia 
are adequate level of hypnosis, analgesia, relaxation, and 
stable vital functions. During the last 20 years many control-
lers for the automatic drug delivery in anaesthesia were 
developed. Our group also developed controllers for the 
neuromuscular blockade, the depth of hypnosis and the 
analgesia. In order to administer the medication as needed, 
a model-based control design or a model-based control is a 
goal worth striving for. The controller designed in our group 
and first results of the studies are presented and evaluated 
briefly. 
 
Keywords: automation in anaesthesia, automatic drug 
delivery	  
	  
Introduction 
In clinical practice anaesthesiologists have to observe and 
control a huge amount of hemodynamic and respiratory 
variables as well as clinical signs for adequate hypnosis 
and analgesia. In neuro-, thoracic- and abdominal surgery 
a continuous neuromuscular block is needed to guarantee 
optimal surgical conditions. A neuromuscular blocking 
drug is administered in order to prevent reflex muscle 
movement. 
New short-acting drugs are introduced over the last years. 
This makes a continuous mode for drug application pos-
sible and implies the use of automatic control.  
For the design of a closed-loop control system a measura-
ble control value and remote controllable infusion pumps 
are needed.  
 
Measurement and Modelling 
For the determination of the degree of neuromuscular 
blockade is the muscle response recorded. The evoked 
muscle response after supramaximal stimulation of a 
motoric nerve (e.g. ulnaris nerve - adductor pollicis mus-
cle) can be registered by electromyography (EMG) or 
acceleromyography (AMG). A frequently used device is 
the “NMT-module” (Fa. General Electric) [1].  
Measuring depth of hypnosis is often discussed and no 
final answer can be given. Different algorithms are known 
for estimation the depth of hypnosis from the raw EEG.  
The bispectral index (BIS) becomes very popular in the 
last years and has been validated in large studies. The 
algorithm combines the power spectrum and bispectrum 
with a burst suppression analysis. The BIS describes a 

complex EEG pattern within a simple variable. The BIS-
monitor (Fa. Aspect Medical) reflects the state of hypno-
sis with help of an index between 0-100, where 0 repre-
sents an isoelectrical EEG.  
The main problem of measuring the analgesia level is the 
loss of parameters, which describe the current status. A 
rather new commercial device called A.N.I.-Monitor (Fa. 
MetroDoloris) uses a wavelet transformation of the ECG 
to gather information about the parasympathetic tone. The 
A.N.I.-Monitor outputs a simple numeric value with a 
scale from 0 - 100 to describe the state of analgesia calcu-
lated from the hearth rate variability (HRV) [2]. More 
popular is the use of direct HRV parameters to detect the 
analgesia level [4]. 
For the controller design it’s desirable to use a model 
description that explains the interaction between the drug 
infusion and the measurable effect. The most popular kind 
to model the drug distribution and elimination are phar-
macokinetic-pharmacodynamic (PKPD) models. 
Pharmacokinetics describes the dynamic process of drug 
distribution in the body from the infusion to the concen-
tration in the blood and pharmacodynamics describes the 
interaction from the blood concentration and the measure-
able effect [3]. Figure 1 shows the general structure of the 
PKPD model description. 
 

    
 
Figure 1: Structure of the simple drug interaction model in 
Wiener structure, with u as infusion rate, e-sT as delay time 
for the drug transport, G(s) as transfer function of the PKPD 
model and Eeff   as measurable effect after the static nonline-
arity. 
 
Depending on the used drug G(s) is a third order model 
for the neuromuscular blocking drug or a fourth order 
model for the hypnotic drug Propofol. 
Figure 2 shows the schematic description of the developed 
control system. An adaptive generalized predictive controller 
(aGPC) was developed for the control of the neuromuscular 
blockade [5]. Because of the nonlinear behaviour of the 
measurement of the depth of hypnosis a simple fuzzy con-
troller as nonlinear controller was integrated. For the design 
of the fuzzy PD+I controller a standard implementation of 
the integral (I) part was used. The rules for the proportional-
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differential (PD) part were designed with the help of the 
expert knowledge of our anaesthesiologists. A rule-based 
expert-fuzzy system controls the level of analgesia [4]. It was 
designed to reflect the decision-making process of anaesthe-
tists regarding the change of infusion rate. 

 
 
Figure 2: Implementation of the control system at the Con-
trol Application Centre at the University of Rostock, with set 
points sx and transfer functions Gx and Gxy . 
 
Results and Discussion 
During the last years different multiple-input multiple-output 
(MIMO) studies were done [4,5]. Exemplary results show 
Figure 3 and Figure 4. Figure 3 illustrates one example of a 
MIMO control of neuromuscular blockade and depth of 
hypnosis. 

Figure 3: MIMO control study of neuromuscular blockade 
(NMB) and depth of hypnosis. 1.-plot: NMB-level T1; 2.-
plot: drug infusion rate of Mivacurium; 3.-plot: BIS-Index 
and the last one shows the drug infusion rate of Propofol. 
 
The MIMO control of the depth of hypnosis and the analge-
sia were also successfully validated. Figure 4 shows an ex-
ample. The results of both studies were with good perfor-
mance. These MIMO control system was designed as a 
decentralized MIMO system. The cross reactions between 
hypnotic and analgesic drug were interpreted as disturb-
ances.  Figure 5 shows a way in which the interaction be-
tween hypnotic and analgesic drugs can be modelled. Both 
drugs can be described with a separate PK model and a 
common PD model that reflected the interaction of both 
drugs.  
The results of both MIMO control studies show the potential 
of automatic drug delivery systems to assist the medical staff 
in the daily work. In near future the control systems should 
be validated in bigger studies to promote the idea and the 
development. 

 
Figure 4; Results of the MIMO study of analgesia and depth 
of hypnosis. 1.-plot: analgesia parameter, arterial blood pres-
sure (MAP, on the top), heart rate (HR, in the middle), heart 
rate variability (HRV, on the bottom); 2.-plot: drug infusion 
rate of Remifentanil (on the top the concentration in blood, 
on the bottom the rate); 3.-plot: depth of hypnosis level and 
the last one shows the drug infusion rate of Propofol. 
 
 
 
 
 
               
 
 
Figure 5: Modelling of the Remifentanil-Propofol interaction 
regarding to the level of hypnosis. 
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